Python是一种开源的编程语言,可用于Web编程、数据科学、人工智能以及许多科学应用。学习Python可以让程序员专注于解决问题,而不是语法。由于Python相对较小,且拥有各式各样的工具,因此比Java和C++等语言更具优势,同时丰富的库赋予了Python完成各种伟大任务所需的能力。


下面是程序员和学生最常使用的一些Python工具:


1.IDLE


在安装Python时,默认也会安装IDLE。这是最优秀的Python工具之一。它可以降低Python入门的门槛。它的主要功能包括Python Shell窗口(交互式解释器)、自动补齐、高亮显示语法以及基本的集成调试器。IDLE轻巧易用,方便学习。但是,它不适用于大型项目。许多程序员都将其作为最佳的Python工具。


2.Pycharm

python工具包有哪些(python最好用的处理工具)(1)

Pycharm可以应用于写相应脚本和程序包的开发。


如果推荐python IDE,Pycharm排第二,其它的一定不敢排第一。


当你写一个大几千行的项目,类、函数很多,这时候它的跳转功能就发挥威力啦!


这可能是python开发最爽的时刻!要飞~


最酷的是,PyCharm支持IronPython。



3.Jupyter Notebook

python工具包有哪些(python最好用的处理工具)(2)

Jupyter Notebook 就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以 Web 页面的方式展示。它是数据分析、机器学习的必备工具。回复 “jupyter” 给你看一个基于 jupyter 写的 Python 教程。


4.Python Tutor


Python Tutor 是由 Philip Guo 开发的一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在 Web 浏览器中编写 Python 代码,并逐步可视化地运行程序。如果你不知道代码在内存中是如何运行的,不妨把它拷贝到Tutor里可视化执行一遍,加深理解。


5.Scikit-learn


Scikit-learn是数据科学最常使用的Python工具之一。这是一款为机器学习和数据科学而设计的Python工具。该工具主要用于处理分类、回归、聚类、模型选择以及预处理等任务。scikit-Learn最出色的功能是在测试数据集上执行基准测试时,表现出的惊人速度。因此,对于程序员和学生来说,Scikit-learn是最优秀的Python工具之一。


6.Theano


Theano是一款数据科学的Python工具,对于程序员和学生而言,这是一款非常可靠的工具。它是深度学习方面最好的Python工具,因此非常适合深度学习。Theano的设计主旨是用户友好、模块化、易于扩展,而且可以与Python配合使用。它能够以最佳方式表达神经网络。Theano可以在TensorFlow和CNTK等流行的神经网络之上运行。


7.Selenium


Selenium是最佳的Python自动化工具之一。它适用于Python测试的自动化,常常用作Web应用程序的自动化框架。我们可以利用Selenium,通过许多编程语言(包括Java、C#、Python、ruby以及其他许多程序员和学生使用的语言)来编写测试脚本。你还可以在Selenium中集成Junit和TestNG等工具,来管理测试用例并生成报告。


8.Test complete


Testcomplete是另一款非常出色的Python自动化工具。支持Web、移动和桌面自动化测试。更高级的应用需要获得商业许可,而且它还可以帮助学生提高学业成绩。Test complete还可以像机器人框架一样执行关键字驱动的测试。它拥有最出色的录制以及回放功能,非常实用。


9.Beautiful soap


Beautifulsoap是网络抓取的Python工具。这个Python库能够从HTML和XML文件中提取数据,是导航、搜索和修改分析树的Python工具。此外,Beautiful soap还可以自动将传入文档转换为Unicode,并将传出文档转换为UTF-8。它是最优秀的Web抓取工具,可以节省大量时间。


10.Pandas


源于NumPy,提供强大的数据读写功能,支持类似SQL的增删改查,数据处理函数非常丰富,并且支持时间序列分析功能,灵活地对数据进行分析与探索,是python数据挖掘,必不可少的工具。


Pandas是数据分析方面最常用的Python工具之一。Pandas是BSD许可的开源库,为Python编程语言提供了高性能且易于使用的数据结构以及数据分析工具。长期以来,Python一直非常适合数据准备工作。Pandas填补了这一空白,你无需切换到其他域即可在Python中执行整个数据分析工作流,而且Pandas还是数据分析方面最出色的Python工具。


11.PuLP


PuLP是线性规划的Python工具之一。它是一种优化类型,能够在一些给定的约束条件下最大化目标函数。PuLP用Python编写的线性规划建模器。


PuLP可以生成LP文件,并调用高度优化的求解器GLPK、COIN CLP/CBC、CPLEX以及GUROBI来解决这些线性问题。学生可以利用这款工具来进行定期的研究,而程序员也可以在工作中利用这款工具。